

Study on the Application Effect of Surgical Cooperation Path in Robot-Assisted Gynecological Oncology Surgery

Fuli An

Operating Room, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China

814635261@qq.com

Keywords: robot-assisted, gynecological oncology surgery, surgical cooperation path, surgical efficiency

Abstract: In robot-assisted gynecological oncology surgery, the application of surgical cooperation path aims to improve surgical efficiency and patient safety by optimizing the surgical process. Studying a reasonable surgical cooperation path can effectively reduce surgical time, lower the incidence of postoperative complications, and enhance surgeons' operational accuracy during surgery. Through simulating surgical paths and real-time monitoring, surgeons can better respond to emergencies during surgery, thereby improving the overall treatment effect. This study explores the impact of surgical cooperation path on postoperative recovery, intraoperative blood loss, and hospital stay by analyzing surgical data from multiple patients. The results show that the surgical group using robot-assisted technology combined with the optimized path is superior to the traditional surgical group in all indicators. This study provides an important reference for the standardization and personalization of gynecological oncology surgery in the future.

1. Introduction

1.1. Research Background

Medical technology is developing rapidly, and the application of robot-assisted technology in the surgical field is becoming increasingly widespread. It shows obvious advantages especially in gynecological oncology surgery [1]. Conventional gynecological oncology surgery often faces problems such as long surgical time, large trauma, and high risk of postoperative complications. These factors have an adverse impact on patient recovery. Robot-assisted surgery, with its high precision, flexible operation, and three-dimensional vision, effectively makes up for the shortcomings of traditional surgery and improves surgical safety and effectiveness. In this context, the research on surgical cooperation path is particularly important. A reasonable surgical cooperation path can optimize the surgical process, improve surgical efficiency, and reduce the consumption of medical resources. Based on the characteristics of robot-assisted gynecological oncology surgery, studying the improvement of surgical cooperation path helps promote the improvement of surgical level and provides new ideas and strategies for clinical practice. Through a systematic study of the nature of various surgical plans, it will be in a better position to advise clinicians to make decisions regarding the practical operation and enhance satisfaction and quality of life among patients.

1.2. Research Significance

In the research of robot-assisted gynecological oncology surgery, the application of surgical cooperation path has important clinical and economic value. From the clinical perspective, an appropriate cooperation path can optimize the surgical process, shorten the surgical time, reduce the incidence of postoperative complications, and enhance patient safety and postoperative recovery effect. This plays a positive role in improving patients' quality of life and satisfaction. With the popularization and application of robot technology, researching the efficiency of cooperation path provides technical support for the collaborative work of surgical teams and realizes efficient communication and collaboration among interdisciplinary teams. From the economic perspective, optimizing the surgical cooperation path can significantly reduce additional medical expenses caused

by surgical delays or postoperative complications, reduce the loss of medical resources, and improve the overall efficiency of medical services. It provides practical guidance for the implementation of robot-assisted gynecological oncology surgery and framework support for the improvement of medical management and hospital operation, helping to achieve the comprehensive improvement of medical service level.

2. Current Status of the Application of Surgical Cooperation Path in Robot-Assisted Gynecological Oncology Surgery

2.1. Characteristics and Process of Robot-Assisted Gynecological Oncology Surgery

Robot-assisted gynecological oncology surgery has many prominent advantages, including high precision, minimal invasiveness, and flexible manipulation [2]. The system performs complex anatomical operations with minimally invasive surgical technology, effectively reducing patients' postoperative pain and complications and accelerating the recovery process. The surgery process mainly involves three fundamental steps which include; the preoperative planning, the operation and the postoperative treatment. Preoperative preparation phase will consist of active evaluation of the patient, which will involve imaging tests and lab tests to provide clarity on surgical signs, risk assessment. Surgical operations carried out on the intraoperative are done with professional surgeons working with the robot system, and are carried out to carry out accurate surgical operations with the help of high definition three-dimensional sight to identify and manipulate the tissues surrounding the tumor. Postoperative care phase is concerned with the state of recovery of the patient, taking into account vital rates, analgesia, and prevention of infections. After surgery, the patient needs to undergo systematic follow-up to evaluate the surgical effect and recovery status. With its comprehensive advantages and process characteristics, robot-assisted gynecological oncology surgery provides strong support for improving treatment effects and optimizing patients' overall medical experience.

2.2. Construction and Connotation of Surgical Cooperation Path

Constructing a surgical cooperation path is a key link in optimizing robot-assisted gynecological oncology surgery [3]. This is a comprehensive program, including all the information about preoperative assessment and postoperative care. The development of pathology is based on the premise of adequate preparation before surrogacy, and the patient's medical history, imaging information and physical condition are evaluated, which will ensure the adequacy and feasibility of the surgical plan. During the operation, it is necessary to formulate detailed operating norms, clarify the responsibilities of each position, and improve the efficiency and safety of surgery through teamwork. In this process, real-time monitoring and information collection technology can provide instant feedback for the operation, which is convenient for timely adjustment of measures and ensures the smooth completion of the operation. Postoperative treatment is also essential. It is necessary to continuously track the patient's rehabilitation process, including the prevention of complications and the adjustment of the nursing plan to improve the rehabilitation effect. The construction of the surgical cooperation path coordinates the operations of various links, provides strong support for patients to receive high-quality medical services, and further improves the overall medical quality and patient satisfaction.

2.3. Analysis of Application Scenarios

2.3.1. Cooperation Path in the Preoperative Preparation Stage

The smooth implementation of robot-assisted gynecological oncology surgery lies in the collaborative path during the preoperative preparation stage. This is a multi-dimensional consideration and planning. An extensive clinical evaluation of the patient should be carried out, consisting of gathering medical history, an examination of the patient, and relevant laboratory tests to be performed, so that the patient can be qualified to have robot-assisted surgery. With imaging examination methods such as ultrasound, CT, or MRI, the location, size, and correlation with surrounding tissues of the tumor can be accurately determined, providing key basis for formulating

the surgical plan [4].

When coming up with the surgical plan, the physicians are expected to take on the knowledge of the interdisciplinary team, agree in in-depth conversations, and attempt to choose the right course of surgery. During the preoperative stage, skill training and simulation drills should be carried out to ensure that the surgical team is proficient in robot operation and their respective responsibilities. All required surgical instruments and consumables should be prepared to fully meet the intraoperative needs. This should be done by setting appropriate preoperative communication that helps patients to understand surgical procedures, risks, and expectations after surgery. It is necessary to develop a favorable attitude. Through the effective implementation of the systematic collaborative process, the preoperative preparation link can effectively reduce surgical risks, optimize surgical results, and lay a solid foundation for patient safety and recovery.

2.3.2. Cooperation Path in Key Intraoperative Steps

In robot-assisted gynecological oncology surgery, the coordination between key steps and the collaborative path is particularly critical. Every effort must be made to ensure the smooth progress of the surgery and the safety of the patient. Before the official start of the surgery, the surgical team needs to verify the preoperative examination to ensure that all preparations are in place. During the surgery, the surgeon implements precise control through the robot system and identifies and handles important anatomical structures using high-definition three-dimensional vision [5]. The collaborative path requires team members to strictly follow the preset operating procedures to ensure the efficient execution of each step.

They involve the major connection in terms of tumor resection, separation of tissues and protection of blood vessels and nerves structures. When performing a tumor resection, the concern of doctors should be on assessing the tumor margin, making the effort to resect the entire tumor, and prevent the possibility of residue. Anesthesiologists and nurses in the team need to cooperate closely to monitor the patient's vital signs, blood loss, and other surgery-related indicators in real time, so as to adjust the anesthesia plan in a timely manner and respond to emergencies. The optimization of the intraoperative collaborative process is achieved through the division of responsibilities and good cooperation of the teams, which enhances the success rate of the surgery process, lowers the rates of complications, and provides a safer operating space to patients.

2.3.3. Cooperation Path in the Postoperative Processing Stage

In the postoperative processing stage of robot-assisted gynecological oncology surgery, path coordination is also indispensable to optimize the patient's recovery process and ensure postoperative safety. In the postoperative stage, the patient needs to receive comprehensive monitoring, including the evaluation of vital signs, bleeding status, and pain management. The medical team should record and evaluate the recovery status in a timely manner. It is particularly critical that medical staff implement an individualized care plan, adjusting pain intervention and fluid input data according to each patient's postoperative response to promote the recovery process. During the postoperative follow-up evaluation, doctors must analyze the pathological report after tumor resection and discuss the subsequent diagnosis and treatment strategy with the patient, including the necessity of radiotherapy or chemotherapy. For possible complications such as infection or bleeding, an efficient monitoring system must be established to strive for early identification and intervention. Psychological counseling for patients and popularization of rehabilitation knowledge should be regarded as key links in postoperative collaborative rehabilitation. By imparting knowledge about postoperative recovery, patients' cooperation and satisfaction can be enhanced. With a comprehensive and standardized postoperative management plan, the overall recovery effect and quality of life of patients can be significantly improved.

3. Evaluation of the Application Effect of Surgical Cooperation Path in Robot-Assisted Gynecological Oncology Surgery

3.1. Evaluation of Surgical Efficiency

3.1.1. Comparison of Total Surgical Time and Time Consumed in Key Steps

One of the key indicators to evaluate surgical effectiveness is the comparative analysis of total surgical time and time consumed in core steps^[6]. The analysis of effectiveness is performed based on the comparison of actual data across various paths of the surgical cooperation. Total surgical time usually comprises time spent on preparation of an operation, the time spent performing the operation and recovery afterwards. In the case of robot-assisted technology, maximum cooperation route reduction might reduce the preoperative preparation connection and enhance the efficiency of the whole operation. The improved efficiency of rapid patient assessment and medical record preparation after admission facilitates the smooth implementation of preoperative preparation. In key surgical steps, such as tumor resection, tissue separation and suture, adopting an appropriate cooperation path enables surgeons to operate more accurately and efficiently, thereby reducing the time consumed in core steps. Through the use of surgical time data in various cases, a quantitative analysis can be carried out by comparing the variation in total surgical time between the use of cooperation path and traditional methods, in addition to the time taken in the major steps used. Clinical data show that the total surgical time is significantly shortened and the time consumed in core steps is reduced after optimizing the cooperation path, confirming the key role of the cooperation path in improving surgical effectiveness. The increased time efficiency improves the operating experience of surgeons and offers scientists with quicker and safer configurations of surgeries to their patients.

3.1.2. Analysis of Equipment Turnover Rate and Operating Room Utilization Efficiency

A key part of evaluating the application effect of the surgical cooperation path in robot-assisted gynecological oncology surgery is analyzing the equipment turnover rate and operating room utilization efficiency. The equipment turnover rate indicates the number of times surgical instruments and robot systems are used in several surgeries. Its value directly indicates the optimization level of medical resource utilization. By constructing an efficient surgical cooperation plan, the preoperative preparation and finishing links can be optimized, reducing the transition cycle of the equipment between different surgeries, so as to achieve the purpose of improving the efficiency of equipment use. Operating room utilization efficiency focuses on the proportional relationship between the actual use time of the operating room and the total available time^[7]. A reasonable cooperation path helps to closely connect the preoperative, intraoperative, and postoperative links, avoiding unnecessary waiting time and improving the overall operational efficiency of the operating room. The analysis of equipment turnover rate and operating room utilization efficiency can be compared with quantitative data. By counting the frequency of equipment use and the idle time of the operating room under different surgical methods, it is verified that the equipment turnover rate and operating room utilization efficiency have been significantly improved after improving the cooperation path. Provide support for hospitals to formulate more scientific resource allocation strategies, so as to promote the double improvement of overall service quality and patient satisfaction. The analysis provides an important reference for hospital surgery management and lays the data foundation for the continuous optimization of the subsequent surgery process.

3.2. Evaluation of Surgical Quality and Safety

3.2.1. Comparison of Intraoperative Complication Rates

The comparison of the incidence of intraoperative complications is an important indicator for measuring the quality and safety of surgery. It reflects the actual effect of the surgical coordination process in robot-assisted gynecological tumor surgery. By comparing the intraoperative complications of the collaborative process and the traditional surgical methods, we can verify the positive role of the collaborative process in improving patient safety. Analysis data shows that an efficient collaboration process can reduce the occurrence of complications such as intraoperative

blood loss, vascular damage and organ perforation [8]. After the introduction of the robot system, high-precision surgical technology and high-definition visual guidance make the surgeon's surgery more accurate and reduce the damage to the surrounding tissue structure. Comparing the intraoperative complications data of the two groups of control experiments, we can clearly implement the significance of the optimization process to reduce the occurrence of complications, and emphasize the benefits of the collaborative process to improve the safety level of surgery. Comprehensive consideration of the occurrence and treatment countermeasures of intraoperative complications is conducive to the formulation of standardized improvement plans, providing theoretical support for clinical application, and improving the overall satisfaction and treatment effect of hospitalized patients. The comparative study of the incidence of intraoperative complications is of great significance for the continuous optimization of the quality and safety of robot-assisted gynecological tumor surgery.

3.2.2. Analysis of the Incidence of Surgery-Related Adverse Events

The analysis of the incidence of surgery-related adverse events is a key link in evaluating the level of robot-assisted gynecological oncology surgery and patient safety guarantee. This analysis can reveal in-depth information about potential risks during surgery [9]. By comparing the occurrence of adverse events between the surgical collaboration path and traditional surgical methods, the leading effectiveness of the collaboration path in reducing risks can be more accurately clarified. Intraoperative adverse events include bleeding caused by operational errors and delayed postoperative complications due to equipment failure. Systematic recording and analysis of the event incidence help identify key defects in the surgical process. After implementing the optimized surgical collaboration path in the study, the incidence of related adverse events was significantly reduced. The clinical safety factor and effect of the treatment are enhanced by transparent standardization of the process as well as collaboration of the team. The severity classification and analysis scope of adverse events can be used to measure the safety of the collaboration path, providing strong support for in-depth analysis in clinical medicine and enhancing intraoperative transparency and predictability. This significantly promotes the improvement of patient care quality and surgeons' operational skills, ultimately achieving the goal of standardized development of robot-assisted gynecological surgery.

3.3. Evaluation of Team Collaboration and Satisfaction

3.3.1. Satisfaction of Surgical Team Members with the Cooperation Path

The recognition of the collaboration process by surgical team members is a key element in evaluating the effect of robot-assisted gynecological oncology surgery. Teamwork satisfaction is directly related to the efficiency and final results of the operation. The research team distributed structured questionnaires to surgical team members to collect their feedback on the implementation of the collaborative process, with particular attention to the clarity of the cooperation experience, the level of information exchange, and the division of responsibilities throughout the surgical process. In the process of efficient collaboration, team members are more satisfied with their work, have a clearer understanding of their tasks, and effectively reduce communication barriers during the operation. During the transition to the optimized collaboration process, the satisfaction survey showed that there was greater tacit understanding in intraoperative collaboration and more rapid coordination in emergency situations. The improvement of the overall team atmosphere enhanced mutual trust among members and increased work enthusiasm. The regular collection and analysis of team members' satisfaction with the collaboration process provide an experiential basis for optimizing surgical workflows, promote communication and interaction within the team, and enhance team cohesion, thereby improving overall surgical quality and patient safety. Furthermore, strengthening the evaluation of team members' satisfaction with the collaborative process contributes to continuous improvement and standardized management of the surgical team.

3.3.2. Surgeon-in-Charge's Score on Team Collaboration Effect

The surgeon-in-charge's score on team collaboration effectiveness is a key link in evaluating the

implementation effect of the collaboration process in robot-assisted gynecological oncology surgery [10]. The surgeon-in-charge plays a key role in the surgical process, and their evaluation of team collaboration can directly reflect the efficiency of the surgical collaboration process in practical operations. The score typically entails a variety of factors, such as the fluent character of intraoperative communication, the implicit knowledge of the team members cooperation, the suitability of preoperative preparation, and the capacity to react to emergencies. The surgeon-in-charge uses standardized scoring system to carry out quantitative assessments on all aspects to make comprehensive feedback. After implementing the improved collaboration process, the surgeon-in-charge's score on team collaboration effectiveness has significantly increased. Especially in communication and decision-making links, doctors feel that the response speed and problem-solving ability of team members have been significantly enhanced. Active scoring results help ensure the smooth progress of surgical operations, thereby improving patient safety guarantee. Regularly collecting the surgeon-in-charge's scores and feedback can provide efficient basis for future process optimization and team training, helping to improve the level and efficiency of overall medical services and striving to ensure the success rate of robot-assisted gynecological surgery and patient satisfaction.

4. Conclusion

In robot-assisted gynecological oncology surgery, the application research of the surgical cooperation path highlights its key role in improving surgical effectiveness. Its importance is reflected in ensuring patient safety and promoting the collaboration of medical teams. The systematic combination of the total surgical process, rationalization of the preoperative preparation, intraoperative operation and postoperative care gives a major contribution to improving the surgical effectiveness, minimising the overall time spent on the surgical process and time spent on the key steps. There is a reduction in the number of intraoperative complications and surgery-related adverse events, which proves the great impact of the surgical cooperation path to the improvements of surgical safety. The satisfaction scores of surgical team members and the surgeon-in-charge with the cooperation path have both increased, indicating that the path helps strengthen team collaboration capabilities and communication efficiency. Based on the above research conclusions, implementing the surgical cooperation path can improve the quality and safety of robot-assisted gynecological oncology surgery and provide strong support for improving patients' treatment experience. The promotion and application of this path have significant clinical value. It is recommended that in future surgical practice, the research and optimization of the surgical cooperation path should be continuously deepened to comprehensively improve the comprehensive benefits of robot-assisted surgery and the level of medical services.

References

- [1] Piao J X, Wu P L, Li J. Application Analysis of Robotic Surgical Systems in Gynecologic Oncology[J]. China Maternal and Child Health, 2016, 31(22):2. DOI:10.7620/zgfybj.j.issn.1001-4411.2016.22.101.
- [2] Wu A F, Yang S J, Yin G P, et al. Experience of Robotic-assisted Laparoscopic Surgery in Gynecologic Oncology[J]. Journal of Laparoscopic Surgery, 2020, 25(11):5. DOI:10.13499/j.cnki.fqjwkzz.2020.11.866.
- [3] Hao X W, Niu H T, Pier Cristoforo Giulianotti. Development and Application Prospects of Robotic-assisted Surgical Systems[J]. Journal of Precision Medicine, 2019, 34(2):4. DOI:CNKI:SUN:SPAN.0.2019-02-001.
- [4] Zheng L P. Study on Health Education Based on the Clinical Pathway of Uterine Fibroids and Its Implementation Effect[J]. Journal of Hebei Medical University, 2013(3):3. DOI:10.3969/j.issn.1007-3205.2013.03.044.
- [5] Wang X Y, Zhu X D. Application of Intraoperative Image Guidance in Laparoscopic and Robotic

Hepatectomy[J]. Chinese Journal of Hepatobiliary Surgery, 2017, 23(11):4. DOI:10.3760/cma.j.issn.1007-8118.2017.11.005.

[6] Xiong R C. Effect Analysis of Robot-assisted Treatment for Cerebral Hemorrhage and Feasibility Study of New Surgical Collaborative Robot Technology[D]. PLA Medical College, 2022.

[7] Li Y F, Liu Q. Research Progress on the Application of Artificial Intelligence Robots in Operating Room Material Distribution Management[J]. Chinese Science and Technology Journal Database (Citation Edition) – Medicine & Health, 2021(2):129.

[8] Li Y L, Li Q L, Yuan J, et al. Application Effect of Robocare Nursing Model in Perioperative Patients Undergoing Robot-assisted Radical Surgery for Gynecologic Malignancies[J]. Medical Equipment, 2023, 36(23):108-109.

[9] Cao F. Meta-analysis of Short-term Outcomes Between Da Vinci Robotic Surgery and Laparoscopic Surgery in Distal Gastric Cancer Radical Resection[D]. Northwest Minzu University, 2020.

[10] Tian Y L, Sun Y Q, Kang X N, et al. Practical Exploration of Assistant Responsibilities and Operational Norms in Robotic Radical Gastrectomy[J]. Chinese Journal of Gastrointestinal Surgery, 2025, 28(08):937-941. DOI:10.3760/cma.j.cn441530-20250623-00238.